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Abstract - Our distributed model of the saccadic system faithfully 
reproduces saccadic waveforms and the patterns of neuronal 
activity observed in several brain areas. However, our model is not 
based on principles found in classical theories of motor control. In 
this paper we attempt to extract from our model some general 
principles about neural motor controllers. We conclude that 
intrinsic brain signals might represent non-physical signals, such as 
desired sensory states, approximate motor drives, and distributed 
motor commands, rather than physical signals (e.g., desired 
displacement or motor error). Furthermore, our model 
demonstrates that the critical transformation from maps of sensory 
space to temporal motor commands is not necessarily carried out 
explicitly. Instead, the transformation can be implicit, emerging 
from network connections within a feedback loop. 
Keywords - Saccade, Control System, Modeling, Eye Movement, 
Sensorimotor Transformation 

 

I. INTRODUCTION 

 
Historically, models of the neural control of movement have 

been based on classical systems or control theory principles. An 
example of this approach is represented by the model of the 
saccadic system proposed by D.A. Robinson over 25 years ago 
[1], and by its many data-driven modifications [e.g., 2-5]. Such 
models have helped us formalize the problems that the brain 
faces, provided insights into adaptive processes, and often 
inspired further experiments. However, control system models do 
not accurately represent brain structure and activation patterns. 
Worse, they can impede the achievement of a thorough 
understanding of the brain by forcing our interpretations of 
experimental data to match arbitrary expectations.  

Whereas this approach was justified in the past, when very 
little was known about the brain at the neuronal level, it is now 
important to work with models that mimic actual brain structure 
and neuronal activity. One of the key advantages of these new 
models, which are called neuromimetic, is their ability to predict 
behavior under novel experimental conditions. Furthermore, they 
can provide insight into the nature of neural signals and their 
encoding, at both the single neuron and population level.  

Our recently proposed neuromimetic model of the saccadic 
pulse generator [6, 7] makes realistic movements and accurately 
reproduces neuronal activity under different experimental 
conditions; yet it does not fit into any classical controller scheme. 
This lack of conformance induced us to investigate whether some 
general principles about information processing during the neural 
control of movement could be inferred from our neuromimetic 
model. 

II. MODEL COMPARISON 

 
In this section we present a comparison between classical 

models and our model of the saccadic burst generator.  

A. Classical Models 

The eye plant (globe, extraocular muscles, and orbital tissues) 
converts neural innervation signals into ocular orientation. 
Accordingly, information about target location must be turned 
into innervation signals. In all classical models (Fig. 1A), target 
location, encoded in retinal coordinates, is converted into a 
desired movement vector (Ed), encoded in motor coordinates, by 
means of a Sensory–Motor Transformation (SMT). The 
importance of this step cannot be stressed enough, as foveation 
of the same target location can require different movements 
(depending upon the current orientation of the eyes, the speed of 
the target, and other contextual information). The desired 
movement is then converted into the innervation signal (Pulse) 
by an inverse model of the eye plant (by definition an element 
that receives as input the desired movement, and produces as 
output the innervation required to produce that movement).  

The system described in Fig. 1A is feed-forward, and thus 
lacks the ability to compensate for internal noise or errors in the 
inverse model of the plant. However, it is known that neural 
systems, including the saccadic system, have such abilities; thus, 
the inverse model is usually implemented as a feedback system 
(Fig. 1B) in which Ed is compared with another temporal signal 
representing an estimate of the current ocular displacement (Ê). 
This signal is obtained by feeding the innervation signal to a 
forward model of the plant. The output of the comparator (circle) 
gives the difference between these two signals, which represents 
an estimate of the dynamic motor error ( ). The motor error is 
then used to generate the innervation signal (Pulse). Because the 
knowledge of target location is obtained from retinal information, 
which is spatially mapped, this model requires an explicit 
computation to convert the cell-coded target location into a rate-
coded desired movement vector. This computation is called a 
Spatial–Temporal Transformation (STT). 

ˆ em

Alternatively (Fig. 1C), the model could be built as the 
combination of an inverse model of the plant (in the forward 
path) under long term adaptation, and a forward model of the 
plant working in feedback to compensate for short term 
departures from the expected behavior. Note that this case also 
requires both an SMT and an STT. 
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To summarize, in classical models of the saccadic system one 
can identify the following key elements: a sensory–motor 
transformation, a spatial–temporal transformation, a rate-coded 
desired eye movement signal, and a rate-coded error signal. 

B. A Neuromimetic Model 

 A simplified diagram of our model’s pulse generator is shown 
in Fig. 2A. Here we focus only on its functional aspects; the 
close correspondence between the pathways and structures in the 
model and those in the brain is outlined in other publications [6-
8]. The pulse of innervation is the sum of two contributions, or 
directional drives (we term directional drive a signal that, if 
acting alone, would rotate the eyes in a given direction with a 
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Fig. 2. Functional schema of our neuromimetic model. (A) The 
locus of activity on the target map is set by the desired target 
location, and is fixed during the movement. Activity on the pilot 
map is dynamically adjustable during the movement. Velocity feeds 
back to that map  (Pulse) and causes activity to spread (gray arrow 
and ovals) past the midline (vertical dashed line). The activity on 
the pilot map steers the movement, and then stops it when 
inhibition (dashed arrow) from the other side exceeds the net 
excitation from both maps (when the activity has spread to the 
dashed circle). (B) Example of how context is used by the pilot 
map. To make the saccade size larger for the same target, the initial 
locus of activity (dotted disk) is offset away from the midline. (C) 
Movement size is not specified by the initial locus of activity on 
either the spatial or the pilot map alone. A movement the same size 
as that called for in 2B can be made in response to a target at a 
more eccentric location that is moving toward the fovea. This 
simply requires that the initial locus on the pilot map be closer to 
the midline. Thus, the desired movement signal is only implicit in 
the initial locus of activity on both maps.  
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Fig. 1. Classical control system models of saccade generation. (A) 
Target location on the retina (a sensory signal) is converted into a 
desired movement, Ed (a motor command) by a sensory–motor 
transformation (SMT) using additional information (see text). Ed is 
fed to an inverse model of the plant to produce the innervation that 
moves the eye (Pulse). (B) Target location is represented by activity 
on a sensory map, thus a Spatial-Temporal Transformation (STT) is 
required to obtain the rate-coded signal, Ed. The inverse model of the 
plant is usually implemented as a feedback loop in which Ed is 
compared with a temporal signal estimating the current ocular 
displacement, Ê. Ê is obtained by feeding the pulse to a forward 
model of the plant. The output of the comparator (circle) gives the 
difference between these two signals, which represents the dynamic 
motor error ( ). (C) Alternatively, the model could be built as the 
combination of a feed-forward inverse plant model (under long term 
adaptation, arrow), and a forward plant model in feedback, so that a 
feedback controller can compensate for departures from the expected 
behavior. 
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retinotopy of the target information is retained across both maps, 
even though there is some divergence in the projections, so that a 
small site on the target map can send excitatory projections to a 
fairly large fraction of the pilot map. In addition to this 
information (target location) the pilot map also receives some 
additional information, necessary to determine the amplitude and 
direction of the movement that needs to be executed to foveate 
the target (this is the same information used by the SMT in 
classical schemes).  

Using all these input signals, this pilot map generates another 
directional drive (a rate-coded signal) which, summed to the 
other one, guarantees that the appropriate movement is 
generated. Unlike the first signal, which always drives the eyes in 
the same direction, this second drive steers and accelerates the 
eyes (a positive contribution, solid line), and brakes them at the 
end (a negative contribution, dashed line). The movement ends 
when the negative contribution of the second drive cancels out 
the positive contribution of the other drives.  

Feedback allows this model to compensate for noise in the 
pulse generator (represented in Fig. 2A by the summing 
junction). The feedback only needs to act on the second drive, so 
that the speed of its transition from a positive to a negative 
contribution is directly proportional to the pulse (which 
determines the speed of the movement). The mechanism that 
could be employed to implement this functionality is fairly 
simple, and it is best explained with an example. Let’s consider a 
rightward movement, and assume that the pilot map is 
topographically coded, so that the left half of the map pushes the 
eyes to the right (positive contribution) and the right half of the 
map brakes the eyes when they are moving to the right (negative 
contribution).  

Just before the beginning of the movement, a site on the left 
half of the map becomes active (Fig. 2A, gray disk in left half). 
In the first phase of the movement both maps will provide a 
positive drive, thus moving the eyes to the right. As the 
movement progresses, velocity feedback from the pulse 
generator (Pulse) causes the activity on the map to spread 
towards the opposite side (gray arrow), with a speed that is 
directly proportional to the pulse. Eventually the other side of the 
map becomes activated, producing a negative contribution. As 
this contribution grows the pulse shrinks, until it gets to zero 
(when the activity has spread to the dashed circle) and the 
saccade ends. At this point the activity on the map does not 
spread any more and it slowly decays toward zero.  

 

C. Structural Differences 

At first sight our model resembles the classical scheme in 
Fig. 1C, with the feed-forward part corresponding to the first 
pathway in our model, and the feedback part corresponding to 
the second pathway. However, the similarity is deceiving, as the 
classical scheme requires a rate-coded desired movement signal, 
which is not available in our model. Furthermore, in Fig. 1C the 
feed-forward pathway assures that the behavior is accurate on 
average, whereas the feedback pathway takes care of the noise, 
perturbations, and short term changes in the plant. In our model, 

instead, the second pathway takes care of both the accuracy and 
the consistency of the movements. 

Another fundamental structural difference is that, because in 
our model the feedback information is not fed to a comparator, 
the cornerstone of classic feedback control systems, our model 
does not require an explicit STT (i.e., there is no explicit 
computation of an error signal). Our model’s lack of an STT is a 
characteristic of other distributed models of the saccadic system, 
where this result was achieved by enclosing the target map 
(which in their case was also a movement map) within a 
feedback loop [e.g., 9, 10]. 

D. Achieving Saccade Accuracy 

The goal of the saccadic system is to produce fast and accurate 
movements. In classical models, good performance is guaranteed 
because a motor error signal (the difference between where the 
eye should go and where it is) is fed through a system with a high 
gain. That requires that both signals (Ed and Ê ) be temporally 
coded and sent to a comparator.  

In our model things are very different. As noted above, the 
movement ends when the negative contribution generated by the 
second pathway balances the positive contribution coming from 
the first pathway (which decays throughout the movement). The 
duration of the movement is then a function of both the location 
of the site initially activated, and the speed of the spread of 
activation. The farther away from the midline the site initially 
activated lies, the larger will be the movement. Also, because the 
speed of the spread is directly proportional to the pulse (and thus 
to the speed of the movement), if the movement is fast the 
activity will reach the other side quickly, whereas if it is slow it 
will get there later. Thus, other things being equal, the duration of 
the movement is inversely proportional to its speed, keeping the 
amplitude constant. 

Achieving accuracy is then a two-fold problem: first, the brain 
needs to choose an appropriate proportionality constant between 
the speed of the spread and the intensity of the pulse. This 
parameter needs to be varied only when the properties of the 
plant (such as the viscosity of the muscles) change, and, over a 
short period of time, we can consider it a constant. Under this 
hypothesis, the most important determinant of the amplitude of 
the movement is the location of the site initially activated on the 
pilot map. Thus, it must be a function of the location of the target 
and all the other information (e.g., the speed of the target, the 
initial position of the eyes, information about the required 
behavior) that determines the metrics of the desired movement. 
Then, all the brain needs to do to generate a different movement 
for the same target location is to change this initial site. If it is 
moved farther from the midline, the movement will be larger 
(Fig. 2B); if moved closer, it will be smaller. 

   

From this, one might be tempted to conclude that the location 
of the site initially activated on the pilot map encodes the desired 
movement, and thus that the pilot map implements an SMT. 
However, this is not the case because only the distance covered 
by the spreading activity is directly proportional to the 
displacement of the eyes, and how far it spreads is a function of 
both directional drives. If we now want to make a movement that 
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has the same amplitude as the one shown in Fig. 2B, but in 
response to a more eccentric target (Fig. 2C), the site initially 
activated on the pilot map will need to be closer to the midline 
than it was in Fig. 2B. This is because the directional drive 
provided by the first pathway is now stronger (because of the 
more eccentric location of the target), and to stop the movement 
the pilot map needs to start applying the brake earlier, so that by 
the time the eyes have traveled the desired distance the inhibition 
is also stronger than it was in Fig. 2B. 

As this example shows, the size of the saccade is determined 
by both the locus of activity on the target map and the initial 
locus of activity on the pilot map. Thus, in our model there is no 
explicit representation of the desired displacement signal. This 
signal is only implicit, and it is distributed across the two maps. 
This is in stark contrast with models inspired by classical control 
theories, which require an explicit desired movement signal. 

E. Advantages of a Non-classical Model 

There are many advantages of our scheme over classical 
models, such as reduction in computational complexity, 
decreased sensitivity to noise, and resistance to failure.  

Our scheme reduces complexity by not computing a desired 
movement signal, not using comparators, and not needing an 
explicit spatial-temporal transformation. This last operation is 
particularly critical, as it would require the accurate division of 
two dynamic signals, something not easy to accomplish with 
neural circuits (note that any noise in the STT would be 
transferred as-is to the output, because this operation is outside 
the feedback loop).  

Thanks to its extensive use of spatial codes (i.e., maps), our 
scheme is insensitive to noise arising in individual elements. The 
only element sensitive to noise is the pulse generator, where the 
discharge level can be very high and the noise across neurons is 
likely to be correlated. However, that signal is under feedback 
control, and so such fluctuations are automatically compensated.  

Our model is also much more resistant to failure than classical 
models, in the sense that failures to single elements are usually 
not critical. This important property can be ascribed to three 
factors: first, each block is either not vital to the functioning of 
the circuit (like the pilot map) or simple enough to be easily 
replaced (like the target map). Second, the functionality is 
distributed across different areas. And third, the structure is such 
that one pathway (the first one) provides an approximate motor 
drive that is good enough for survival, while the other pathway 
improves the movement’s accuracy and consistency. This is not 
the case in classical models, where the failure of any single block 
would impair the whole system. 

 

III. DISCUSSION 

 
Comparison of classical and non-classical models suggests 

that the encoding of movement signals in the brain may occur in 
a completely unorthodox way, one that does not internalize the      
physical signals (e.g., motor error or desired displacement) 

associated with the movement. Instead, intrinsic brain signals 
may represent desired sensory states (i.e., which target needs to 
fall on the fovea after the movement), approximate motor drives, 
and distributed motor commands. 

Our neuromimetic model is based on what is known about the 
physiology and anatomy of the saccadic system, where the 
superior colliculus would represent the target map and the 
cerebellum the pilot map. Of course, this particular model may 
not represent how the brain actually controls saccadic eye 
movements. However, it demonstrates once more that, through 
the proper connection of many computationally simple elements, 
Nature can devise solutions to control problems that are at the 
same time unorthodox and advantageous (compared to classical 
control schemes). 
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